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Born's Postulate and Reconstruction of the ~b-Function 
in Nonrelativistic Quantum Mechanics 
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A continuous family of self-adjoint operators is constructed such that their 
measurement data are insufficient to reproduce uniquely via Born's postulate 
the underlying quantum state. Moreover, no pair of operators has a common 
invariant subspace. This rejects a conjecture given by Moroz. On the other hand, 
strengthening results obtained by Kreinovitch, it is shown that already one special 
potential and the related localization measurement data at different moments of 
time can guarantee the uniqueness of reconstruction. 

1. I t  is a bas i c  p r o b l e m  in  the  f o u n d a t i o n s  of  q u a n t u m  m e c h a n i c s  to 
desc r ibe  h o w  one  can  r econs t ruc t  the state vec tor  o f  a n  e n s e m b l e  of  par t ic les  
f rom the  e x p e r i m e n t a l  da t a  o b t a i n e d  in  the  course  o f  obse rva t ion .  A c c o r d i n g  
to Born  (1953, p. 100]: 

Physical significance is confined to the quantity t tpl 2 (the square of the amplitude), 
and other similarly constructed quadratic expressions (matrix elements) which 
only partially define 4', it follows, that even when the physically determinable 
quantities are completely known at time t = 0, the initial value of O-function is 
necessarily not completely definable. 

To be  m o r e  precise,  o n e  m a y  ask wh e t h e r  the  da t a  

I~A(A)I, A ~  

d e t e r m i n e  the  state vec to r  t~ up  to a c o n s t a n t  phase  factor.  Here  ~ is a 

g iven  set o f  s e l f - ad jo in t  ope ra to r s  in  a c o m p l e x  Hi lbe r t  space  X a n d  [~JA(A)12 
is the  spect ra l  dens i ty  o f  the  ope ra to r  A w.r.t, the  state vec tor  JJ, so tha t  

( q ' l f (A )O)  = j I4,A(A)I2T(A) do-(A) (1) 

for  A e sr 4' E X (cf. Sec t ion  2). In  pa r t i cu la r ,  let X = L2(R 3, dh) be  the  
Hi lber t  space  o f  c o m p l e x - v a l u e d  L 2 f u n c t i o n s  o n  R3; one  m a y  ask to wha t  

ex ten t  the  abso lu t e  va lues  ]O(x)l a n d  I~(P)[  d e t e r m i n e  the  f u n c t i o n ,  tha t  is, 
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how to describe the set of  solutions of  the system of equations 

[~b(x)] = f ( x ) ,  ]0(P)[ = g(P), 0 C L2(R 3) (2) 

for two given functions f and g; here q~ denotes the Fourier transform of 
0 and one should assume, of  course, that f ( x )  _> 0, g (p )  >- 0 for A-a.e. x c •3, 
p ~ ~3. Even in this special case, corresponding to the position and momen- 
tum measurements for an ensemble of  spinless, nonrelativistic particles, 
this problem remains unsolved. It has been shown (Moroz, 1974), however, 
that given a solution of (2), one can construct another  solution; thus, position 
and momentum measurements are in general not sufficient to reproduce 
the state vector of  a spinless particle (in accordance with the remark of 
Born's cited above). Developing this idea further, we construct here an 
infinite system {A(a) [a  ~ R} of self-adjoint operators, such that although 
the operators A(a) and A(/3) have no common invariant subspace when 

r there are two vectors 0 + and ~b- such that ~O + r cO- with c ~ C, but 
]0A(~)(A)] = ]~bT~(~(A)] for a c R. Thereby we give a counterexample to a 
conjecture of  Moroz 's  (1983, p. 333). The general problem of describing 
the set of  solutions {~0]0 ~ X} to the system of equations (1) when A varies 
over a given set ~r of  self-adjoint operators remains unsolved. One may 
ask, for example,  whether equations (2) have only a finite number  of  
solutions or, more generally, what conditions one should impose on ~r to 
guarantee uniqueness (up to a constant factor) of  the solution to the system 
of equations (1). Already in 1933 E. Feenberg suggested another approach 
to the discussed reconstruction problem and gave a heuristic argument 
suggesting that one could uniquely reproduce the 0-function from position 
measurements during a short interval of  time (cf. Kemble, 1937, p. 71). His 
argument however, is false: Consider two spinless particles moving freely 
on the n-dimensional torus with period L and having the state functions 

n 

q , l ( X )  = 1 and 02(X) = exp[(2~i/L) ~j=l xj] at the moment  of  time t = 0; 
a brief consideration shows that position measurements cannot distinguish 
between @1 and qJ2. On the other hand, we show that position measurements 
carried out at different moments  of  time on an ensemble of  particles placed 
in a suitable potential can provide data sufficient to reproduce the initial 
state of  the ensemble. This results strengthens the results of  Kreinovitch 
(1977). To conclude this introduction, we refer to Band and Park (1979) 
for some other results in one space dimension, which seem to be relevant 
in this context. 

In the next section we describe our counterexample to the Moroz 
conjecture; in Section 3 we construct a system of potentials that ensures 
uniqueness of  reconstruction of the initial state of an ensemble of  particles. 

2. Let A be a self-adjoint (s.a.) operator  in a rigged Hilbert space 
~b c X c ~b' with spectral decomposit ion A = S A  dE;, (cf. Gelfand and 
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Vilenkin, 1964, Chapter 1.4). The operator A has a complete system of 
generalized eigenvectors 

{exlh c spec A}c  &' 

so that each 0 e & can be uniquely decomposed as follows: 

tO = I OA()t)eA do'(h) 
3 

where cr is the Borel measure on spec A determined by A and 0A is the 
or-measurable function on spec A determined by 0 and A satisfying the 
following condition: 

(OIf(A)O) = f 10A(,~)12f(h) do'(h) 

for every Borel-measurable function f According to Born's postulate, the 
probability distribution of the results of the measurements of the observable 
A upon an ensemble of particles prepared in the state 0 e 4~ is given by the 
following function: 

B ~ (0IxB(A)0)/<0I 0) 

where B ranges over Borel subsets of R and XB denotes the characteristic 
function of B. This probability distribution is uniquely determined by the 
spectral density 0a, SO that the probability of finding the value of A in B 
is equal to 

1 C 
l [tOA(A)I2XB(A) do-(h) 
3 

Thus, two states 0 (1) and 0 (2) with the same A-spectral density, that is, for 
which 

IOT(A)J  = I ~ T ( A ) I ,  o =  a.e.  

cannot be distinguished by the measurements of A. Let A 1 , . . . ,  An be s.a. 
operators on q5 c X c qS' such that no pair Ai, Aj with i # j  has a common 
invariant subspace. Moroz (1983, p. 333; 1984) conjectured that if n -> 3 (or 
at least sufficiently large), then it follows from the equations 

IOA,(A)I=I~A,(a)I, o-a,-a.e., l<--i<--n 

that O=cO, c~C, 0 6 0 5 , ~ 6 & .  
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We need the Baker -Campbel l -Hausdorf f  formula, as stated, e.g., in 
(Fr61ich, 1977, p. 135). Let A, B, N be the symmetric operators on 05 
satisfying the following conditions: 

(i) N is essentially s.a. on 05 and N-> 1. 
(ii) There is a K1 in ~ such that 

=kA-<K1N , ~=i[N,A]<-KIN, +B-<K~N, +[N,[N,B]]-<KIN 

in the sense of  quadratic forms on 05 x 05. 
(iii) Let Co = A ,  cn := i[B, cn-1] for n -> 1; then there is K2 in ~ such that 

Cn -<(K2)nn! N, • C~]-<(K2)nn! N 

By Nelson's commutator  theorem (Reed and Simon, 1975, p. 193) it follows 
from (ii) that the operators H and B are essentially self-adjoint on 05. 

Theorem 0 (cf. Fr6hlich, 1977). The following identity holds: 

exp(itB) exp(isA) exp(-itB) = exp is Y. C 
n = O  �9 

for Itl < (12) -1, s c R. Moreover,  the operator }~ n~176 (C~tn/n !) is essentially 
s.a. on D( N) and D( N) ~ •. 

Let 05 = 3' be the Schwartz space of rapidly decreasing functions on R ~ 
and let X = L2(N ~, dA) be the Hilbert space of L2-complex-valued functions 
on N" w.r.t, the Lebesgue measure dA; we denote by xj and pj the operators 
f~--~xJ and f~--~i(O/Oxj)f respectively, for f ~  05. Let 

2 2 N = p 2 + x 2 + l = l +  (pj+xj) 
j = l  

Then pj, xj, N are essentially s.a. on 05 and N - > I ,  and it can be easily 
shown that one may apply Theorem 0 to any real polynomial  in xj, pj of  
degree -<2; moreover,  the constant K2 can be chosen to be arbitrarily small 
by a proper  rescaling of  N. To construct a system of operators {A(a) [a  c N} 
violating Moroz 's  conjecture, we shall work in one space dimension and 
let n = 1. Although the following result is well known, we give a short proof  
of  it to make our exposition self-contained. 

Lemma 1. The operators p and x have no common nontrivial subspace. 

Proof Write 

{[exp(-p2]0}(x)  =�89 exp(-�88 yt2)4~(y) dy 



Reconstruction of the ~-Function 1179 

SO that if ~O>-0, q ~ - 0  almost  everywhere, and (r then 
q / -  0 a.e. or  q~ = 0 a.e. Let U be a c o m m o n  invariant subspace for x and p 
and let q, c U, q~ ~ U• let 

B:-- q, X(C\{0}) 

and let 

,7~(x):=xB(x)~(x)/lr B' := q~-l(c\{0}) 

Then Vo(x)~O(x)>-O and ~(x)q~(x)>>_O for x a.e., and 

~ [ e x p ( - p 2 ) ] r l ~ 0  c U 

so that 

(q~l ~ [exp( -P2) ]  r/r j) = 0 

or (r/~r Therefore,  it follows that q~ = 0  or qJ=0.  []  

Remark 1. Nonvanishing  of  the commuta to r  o f  two s.a. operators on 
every nontrivial subspace of  a Hilbert space does not imply that these 
operators have no c o m m o n  nontrivial invariant subspace:  let --boa be the 
Laplacian on L2(R, dA) with Dirichlet boundary  condit ions on 0A; then 
L2(A, dA) is a c o m m o n  invariant subspace of  L2(R, dA) for x and --AoA. 

Theorem 1. Let A ( a )  := c~p + x 2, c~ c R. The operator  A ( a )  is essentially 
s.a. on the Schwartz space 05 and the two operators A ( a )  and A(/3) have 
no c o m m o n  nontrivial invariant subspace when a r  

Proof. We assume without  loss o f  generality tha t /3  ~ 0. Then 

exp[ itA( a ) ] exp[ isA(/3 ) ] exp[-i tA( a ) ] 

= exp{ is[A(~3) + 2t(a - /3)x  + t2a (ce -/3)]} 

Let U be a c o m m o n  invariant subspace for A ( a )  and A(/3) then it is also 
[ A (/3) + *Tx]-invariant, r / := 2 t ( a  - /3 ) .  Let us define two unitary operators 
B1 and B2: 

(BlO)(x) := exp(i~-lx3/3) qJ(x) for x a.e. 

(B2qJ)(x) := exp(ix2~)/2) t~(x) for x a.e. 

Let ~ be the Fourier  t ransform, and let /~ = B~ o~B 2. The operator  /3 is 
unitary and, moreover,  

BA(/3)B -~ =x, B[a(/3)+~Tx]lB-~=p 

By Lemma 1, we have U = {0} or U = X. This proves the theorem. []  

This theorem can be used to construct a counterexample to the conjec- 
ture of  Moroz  (1983, p. 333). Indeed,  by the theorem, no pair o f  these 
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operators have a common nontrivial invariant subspace; therefore, the 
system {A(a)[a ~ ff~} satisfies the conditions of  the conjecture. The operator 
A(a) is unitary equivalent to a Hamiltonian of a spinless particle in a linear 
potential. We use the unitary operator B1 and the generalized eigenvectors 
of  p to recover the system of  the generalized eigenvectors of  A(a ) :  

e~(x) := exp[i(XA/a + X3/3a)]  

A(a)e;  = he~ 

for a r O. Let now ~p, 7/ be two real-valued even functions in r and let 

O+(x) := ~(x)e i'(:), 4s-(x) := ~(x)e-i , (x)  

Obviously, for nonconstant  71, we have 0 + # cqJ- with c e C. On the other 
hand, let 

~0:(1) := f O-~(x)e~(x) dx 
3 

Then 

and 

f 
IO:(a)12= J e x p { i [ r / ( x ) -  ~7(Y)]} 

x exp{i[h (x - y ) / a ]  + i(x 3 -y3) /3a} dx dy 

f. 

[~2(h)[ 2= J q~(x)~(y) e x p { i [ r / ( y ) -  r/(x)]} 

x exp{i[h (x - y ) / a ]  + i(x 3 -y3) /3a} dx dy 

The substitution x~--~-x and y~--~-y transforms the first integral into the 
second one, since ~p(-x) = p (x )  and r / ( - x )  = r/(x) and we conclude that 

I~;(h) l  2 = Ir 2 

Thus, the A(a) measurements,  a~I~ ,  cannot distinguish between the 
ensemble of  particles prepared in the state 0 + and the ensemble of  particles 
prepared in the state q f ,  contrary to the assertion of the conjecture. 

Rernark2. It can be easily seen that one also cannot distinguish between 
~+ and ~ -  by position measurements or by momentum measurements. 

3. In the Heisenberg picture of  quantum mechanics the position observ- 
able in the j th  direction at the moment  of time t is represented by the operator 

eitHxje--itH~ t c 
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where H denotes the Hamiltonian of the system (assumed to be time- 
independent). The probability distribution of the experimental data 
obtained by conducting position measurements at the moment of time t 
upon an ensemble of particles prepared in the state ~b is given by the function 

B ~-~ (tp, eimxBe-'H ~b)/( q, I ~b) 

where B ranges over the Borel subsets of ~". The distribution of the results 
of the position measurements is determined by the mean values 

(~]eitH ei'~Xe-itH @), h E ~n 

n 
where Ax := ~j=l Ajxj. Let now 

H ( p ) : = - A -  ~ pjx2; p j>0 ,  l<-j<-n 
j=l 

It follows that the operator H(p)  is essentially self-adjoint on ~b. To make 
use of Theorem 0, we choose A=Ax,  B= H(p) ,  and N = p 2 + x 2 + l .  One 
can prove by induction on n that, in the notations of Theorem 0, 

n 

C2m = Z (-4pj)'Ajxj 
j=l 

C 2 m _  1 : -- ~ (-4Pj)mAjpj 
j : l  

so that 

with 

eitHeihXe - i tH : eiA(A) 

n 

A(A) = ~ Aj[cos(2tp)/2) xj _�89 sin(2tp~/2) pj] 
j = l  

Proceeding as in Section 2, we can calculate the generalized eigenfunctions 

{e,,| "| ~ R} 

of the operator A(A): 

tvjxj), 1 ~ j  <-- n e,j(x) := exp(i/~jxj + " 2 

where 

/~j = re(t, "q, p):= 2~bp)/2[sin(2tp)/2)] -~ 

uj = vj( t, p):= p)/2[cot (2tp)/2)] 
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and  

Let 
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A ( a ) ( e , , | 1 7 4  = ( y ~  17?2) (e,~|  �9 . |  

f 
JR" O(x)(e,,| . .| dx 

The distr ibution of  the results of  posi t ion measurements  at the moment  of  
time t is de termined by the map 

a ~(0le'A(*)0)-- f O(n) e'a'O(rl) dn 

or since the Fourier  t ransformat ion  is unitary,  by the map 

,7~l~(n)l  2 

= f tp(x)~(y) exp{i[/z(~7, t, p)(x - y )  

-+- P( t, p)(X 2 _y2)]} dx dy 

The substi tut ion u = x - y, v = x 2 - y2 t ransforms this integral into the follow- 
ing one: 

f [u+vu -~ ~/]~' 2- ){/](U __2 u 1) 

e x p { i [ # ( r  h t, p)u + v(t, p)v]}z~ -1 du dy 

where we let, for  brevity, 

~--1= 1~ U71, (VU--1)j = VjUf 1 
j=l 

Thus, the distribution o f  the results of  posi t ion measurements  at the moment  
of  time t is de termined by the map 

"r/~--~ &( /x(y / ,  t, p),  p(t, p))  

where o~6 denotes the Fourier  t ransform of  the funct ion 

If  2tpl/2r O(mod ~r), i<--j <- n, we have 

{p-(n, t, p)l'q c~"} =W' 
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t / 2  1 / 2  If, moreover,  P i -~,j  is irrational for 1 <-- i < j  <-- n, then the set 

{ v ( t , p ) l t ~ R }  

is a dense subset of  R". Thus, if this last condition is satisfied, the graph 

{[/~(~7, t ,p) ,  v ( t ,p ) ] l~ /E~ n, tC~} 

is dense in ~2,, and we obtain the following statement: 

Theorem 2. Suppose that & > O, 1-<j-< n, and that pff2_/)1/2 is irra- 
tional for 1 <-- i < j  <-- n and let 

j = ]  

Then H ( p )  is essentially self-adjoint on ~b. Moreover, if ~bl and ~b2 have 
continuous Fourier transform, ~bl e X, ~b2 c X, and 

(r e-"'~p~,l ) 

= (Od e " m ' ) f ( x )  e-"m~ 

for all f e  4~ and all t c N, so that (by Born's postulate) one can distinguish 
between the states 01 and 02 by a position measurement at no time, then 
~1 = ei~02 in x for some c ~ R. 

Proof  By assumption, "~.1 and ~.~ are two continuous functions on 
R2. that, according to the above considerations, coincide on a dense subset. 
Therefore, o~,~ = i f . : ,  so that 

i~1 (U-~-2~--1 )i]/1 (/'/--2U--1 )/~--1 = ~//2 (.U "~-2U--1 ) 1~12 ( U --2U--1 ) /~-- 1 

for u, v a.e., and the assertion follows. �9 

Remark3 .  The potential - p x  2 is not physical. However, it can be co n approximated by a sequence of potentials V~ �9 ~o ( R ) ,  m = 0, 1 . . . .  , so that 

V, , f  ~ ( - p x 2 ) f  (L2-convergence) 

for each f ~  qS. Then (Reed and Simon, 1972), p. 292) 

-~X+ V~--. H ( p )  

in the strong resolvent sense, and it follows that the sequence of functions 

X ~ ( ~ l e  ''~-a+v,~ e ixx e-i'(-a+v.,~b) 

converges uniformly (in A) to the function 

a ~(r e""(") e ia'~ e-"m"~g,) 
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for each ~b in L2(3 L ~ and  each t. Since the Four ier  t ransformat ion  is 

con t inuous  with respect to this type of convergence,  the funct ions  o~+ can 
be arbitrari ly good de te rmined  by measurements  in the potent ials  Vm and  
therefore ~'m may be de te rmined  with arbi trari ly high precision.  
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